Dynamic Functional – Link Neural Networks Genetically Evolved Applied to Fault Diagnosis
نویسندگان
چکیده
The paper addresses the development of neural observer schemes for process fault diagnosis. The design is based on a generalised functional-link neural network with internal dynamics. An evolutionary search of genetic type and multiobjective optimisation in the Pareto-sense is used to determine the optimal architecture of the dynamic network. Symptoms characterising the current state of the process are obtained based on prediction errors. The latter are further evaluated by a static artificial network. Experimental results regarding the detection and isolation of artificial sensor faults in an evaporation station from a sugar factory illustrate the approach.
منابع مشابه
Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملDynamic functional-link neural networks genetically evolved applied to system identification
The contribution concerns the design of a generalised functional-link neural network with internal dynamics and its applicability to system identification by means of multi-input single output non-linear models of autoregressive with exogenous inputs’ type. An evolutionary search of genetic type and multi-objective optimisation in the Pareto-sense is used to determine the optimal architecture o...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملNeural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors
This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic
model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003